
What Can I Do
With Git?

Software carpentry
• Write software for

people not
computers

• Automate repetitive
tasks

• Use the computer
to record history

• Make incremental
changes

• Use version control

• Don’t repeat yourself
• Plan for mistakes
• First make it correct,

then make it fast
• Document design &

purpose not
mechanics

• Conduct code
reviews

Wilson et al. (2014) Best practices for scientific computing. PLoS Biology 12: e1001745

What is version control?
What does git do?

• Keeps track of changes made to files
• Lets you go back to old versions
• Only one version in your directory
• Can also be used to…

• Keep files synced at multiple locations
• Work with other people
• Publish your code

“Piled Higher and Deeper” by Jorge Cham,
http://www.phdcomics.com

More Realistically

“Piled Higher and Deeper” by Jorge Cham,
http://www.phdcomics.com

script_v1.py
script_v2.py

file-04-05-2015.docx
file-06-08-2016.docx

2015-05-04-file.docx
2016-06-07file_PI.docx
2016-06-08-file.docx

Why Learn Git?
• Reproducible Research

• For you
• Your closest collaborator is you 6

months ago, and you don't respond
to emails.

• For publishing your analysis
• For collaboration

• Code review
• Working together on a project

Side Note: Git is awesome!

• Lots of flexibility and workflows
and pipelines

• Learning the most common ones
usages for working by yourself
today

• Lots of good google-able
resources!

Branches Lesson

Working in Parallel to ‘master’

• You may want to keep the ‘stable’ version as
your master, and make changes in parallel

• Then if the changes are good and tested, then
merge them into your main/‘master’ branch

• In this case we are going to make two paralell
branches from ‘master’ one

• Imagine we are running an analysis and are
unsure if python or bash would be faster. Let’s
test it! But leave the master branch as is
incase neither works out.

commit qet947

commit bna503

master

pythondev

bashdev

Making pythondev Branch

Making the branch and then checking it out

$ git branch pythondev

$ git branch

$ git checkout pythondev

‘Write’ Python script/Track It

We will only touch the script for this example but
imagine you worked a long time on it.

$ touch script.py

$ git add script.py

$ git commit –m “wrote and tested
python script”

Checking Our Work

To see that this branch has that commit and that
file we will list the directory and look at the log

$ ls

$ git log --oneline

Switching Back to master Branch

Next we will switch back to the master branch
and see that it is unchanged.

$ git checkout master

$ git branch

$ ls

$ git log --oneline

Making bashdev Branch

Next we will repeat this process working on the
bash version of our script. This time we will
make and checkout the branch in one step,

$ git checkout –b bashdev

$ git branch

$ ls

‘Write’ Bash Script & Track It

As before imagine you worked a long time on the
script.

$ touch script.sh

$ git add script.sh

$ git commit –m “wrote and tested
bash script”

Checking Our Work

To see that this branch has that commit and that
file we will list the directory and look at the log

$ ls

$ git log --oneline

Turns out…

The python one was much more efficient. So lets
merge it back into the master branch. You
always merge the branch you want into the
branch you are in, so first we must switch back
to the master branch.

$ git checkout master

$ git merge pythondev

Deleting the Old Branches

You can keep these old branches but you
probably want to clean them up since they
might be confusing later.

$ git branch -d bashdev

This gives us a warning since we never merged it
into our master branch. We will still delete it

$ git branch -D bashdev

$ git branch -d pythondev

Github
Git Server

GitLab

Example Github Repos

• All Software Carpentry Lessons are version
controlled with git
• https://github.com/swcarpentry/git-novice

• The website for this workshop is kept in a git
repo
• https://github.com/sstevens2/2017-08-02-chicago-

frb

https://www.linux.com/learn/how-run-your-own-git-server

For those who prefer clicking

There are GUI’s for using git!
- Examples:

- Github Desktop, SourceTree, GitKraken…
- More found at:

- https://git-scm.com/download/gui/windows
- R users: Rstudio has git integration!

https://xkcd.com/1296/

Alt-text:Merge branch 'asdfasjkfdlas/alkdjf'
into sdkjfls-final

https://xkcd.com/1597/

Alt-text: If that doesn't fix
it, git.txt contains the
phone number of a friend of
mine who understands git.
Just wait through a few
minutes of 'It's really
pretty simple, just think of
branches as...' and
eventually you'll learn the
commands that will fix
everything.

